Extracting E versus k effective band structure from supercell calculations on alloys and impurities

نویسندگان

  • Voicu Popescu
  • Alex Zunger
چکیده

The supercell approach to defects and alloys has circumvented the limitations of those methods that insist on using artificially high symmetry, yet this step usually comes at the cost of abandoning the language of E versus k band dispersion. Here we describe a computational method that maps the energy eigenvalues obtained from large supercell calculations into an effective band structure (EBS) and recovers an approximate E( k) for alloys. Making use of supercells allows one to model a random alloy A1−xBxC by occupying the sites A and B via a coin-toss procedure, affording many different local environments (polymorphic description) to occur. We present the formalism and implementation details of the method and apply it to study the evolution of the impurity band appearing in the dilute GaN:P alloy. We go beyond the perfectly random case, realizing that many alloys may have nonrandom microstructures, and investigate how their formation is reflected in the EBS. It turns out that the EBS is extremely sensitive in determining the critical disorder level for which delocalized states start to appear in the intermediate band. In addition, the EBS allows us to identify the role played by atomic relaxation in the positioning of the impurity levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations

Alloys such as AlGaAs, InGaAs, and SiGe find widespread usage in nanoelectronic devices such as quantum dots and nanowires. For these devices, in which the carriers probe nanometre-scale local disorder, the commonly employed virtual crystal approximation (VCA) is inadequate. Although the VCA produces small-cell E(k) relations it fails to include local disorder. In contrast, random-alloy superce...

متن کامل

Automated effective band structures for defective and mismatched supercells.

In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) f...

متن کامل

Self-Consistent Supercell Band-Structure Calculations for the Investigation of the Electric Field Gradient at Impurity Sites in Cd Metal

The electric field gradient (EFG) at the nuclei of the 5 sp impurities In, Sn, Sb, I and Xe in Cd metal is investigated on the basis of supercell band structure calculations of C d15M (M = I n , . . . , Xe). The theoretical results show the same trend as the experimental findings. The differences in the EFG for different impurities are related to the charge distribution and partial densities of...

متن کامل

محاسبه میدان مغناطیسی فوق ریز در مکان هسته‌های Cd ,Rh ,FeوSn در بلور کروم

  The incommensurate spin -density –wave magnetism of Cr has attracted great interest since its discovery via neutron scattering. Although the existence of spin- density –wave has been confirmed by experiment but the calculations which have been carried out have not been able to predict the correct ground state magnetic phase for chromium yet. To predict the magnetic hyperfine field at nucleus ...

متن کامل

The simultaneous effect of 3d impurities of transition metals and oxygen vacancy defect on TiO2 anatase and rutile

In this work, the formation of oxygen-vacancy defect in 3d metals-doped TiO2 anatase and rutile structures is first investigated. The systematic calculations of formation energy, crystalline stability, band structure and density of state (DOS) of TiO2 samples of anatase and rutile doped with 3d transition metals with and without oxygen defect is done using FHI-aims as a software package based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012